20.1. Overview
In the case of memory intensive operations, Presto allows offloading intermediate operation results to disk. The goal of this mechanism is to enable execution of queries that require amounts of memory exceeding per query or per node limits.
The mechanism is similar to OS level page swapping. However, it is implemented on the application level to address specific needs of Presto.
Properties related to spilling are described in Properties controlling spilling.
20.2. Memory management and spill
By default, Presto kills queries if the memory requested by the query execution
exceeds session properties query_max_memory
or
query_max_memory_per_node
. This mechanism ensures fairness in allocation
of memory to queries and prevents deadlock caused by memory allocation.
It is efficient when there is a lot of small queries in the cluster, but
leads to killing large queries that don’t stay within the limits.
To overcome this inefficiency, the concept of revocable memory was introduced. A query can request memory that does not count toward the limits, but this memory can be revoked by the memory manager at any time. When memory is revoked, the query runner spills intermediate data from memory to disk and continues to process it later.
In practice, when the cluster is idle, and all memory is available, a memory intensive query may use all of the memory in the cluster. On the other hand, when the cluster does not have much free memory, the same query may be forced to use disk as storage for intermediate data. A query that is forced to spill to disk may have a longer execution time by orders of magnitude than a query that runs completely in memory.
Please note that enabling spill-to-disk does not guarantee execution of all memory intensive queries. It is still possible that the query runner will fail to divide intermediate data into chunks small enough that every chunk fits into memory, leading to Out of memory errors while loading the data from disk.
20.3. Spill disk space
Spilling intermediate results to disk and retrieving them back is expensive
in terms of IO operations. Thus, queries that use spill likely become
throttled by disk. To increase query performance it is recommended to
provide multiple paths on separate local devices for spill (property
spiller-spill-path
in Properties controlling spilling).
Do not spill to the system drive, especially not to the drive where the JVM is running and writing logs. Doing so may lead to cluster instability. Additionally, it is recommended to monitor the disk saturation of the configured spill paths.
Presto treats spill paths as independent disks (see JBOD), so there is no need to use RAID matrices for spill.
20.4. Supported operations
Not all operations support spilling to disk, and each handles spilling differently. Currently, the mechanism is implemented for the following operations.
Joins
During the join operation, one of the tables being joined is stored in memory. This table is called the build table. The rows from the other table stream through and are passed onto the next operation if they match rows in the build table. The most memory-intensive part of the join is this build table.
When the task concurrency is greater than one, the build table is partitioned.
The number of partitions is equal to the value of the task.concurrency
configuration parameter (see Task Properties).
When the build table is partitioned, the spill-to-disk mechanism can decrease the peak memory usage needed by the join operation. When a query approaches the memory limit, a subset of the partitions of the build table gets spilled to disk, along with rows from the other table that fall into those same partitions. The number of partitions that get spilled influences the amount of disk space needed.
Afterward, the spilled partitions are read back one-by-one to finish the join operation.
With this mechanism, the peak memory used by the join operator can be decreased
to the size of the largest build table partition. Assuming no data skew, this will
be 1 / task.concurrency
times the size of the whole build table.
Aggregations
Aggregation functions perform an operation on a group of values and return one value. If the number of groups you’re aggregating over is large, a significant amount of memory may be needed. When spill-to-disk is enabled, if there is not enough memory, intermediate cumulated aggregation results are written to disk. They are loaded back and merged when memory is available.